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Let θ̃ = θ̂ − θ denote the error associated with a uniformly unbiased estimator1 θ̂ of an

n-dimensional real parameter vector θ. Necessarily then, Eθ

{
θ̃
}

= 0. Let the associated

real n× n error covariance matrix of θ̃ be given by

Σ = Σ(θ̂, θ) = Covθ

{
θ̃
}

= Eθ

{
θ̃θ̃T
}

= Eθ

{
(θ̂ − θ)(θ̂ − θ)T

}
.

Note that Σ(θ̂, θ) is a function of both the estimator θ̂ and the assumed (unknown) parameter
vector θ, even though we often use the simpler notation Σ in place of the more informative
Σ(θ̂, θ), and thereby not show this dependence explicitly.2 It is usual to further assume that
the (necessarily symmetric and positive-semidefinite) error covariance matrix is positive-
definite (and hence full-rank and invertible), Σ > 0. In the latter case the random vector θ̃
is called full-rank.

It is well-known that a symmetric n × n positive-definite matrix, Σ, has n nonzero real
eigenvalues, σi > 0, and associated real orthogonal (which can assumed to be normalized)
eigenvectors ui,

Σui = σi ui with 〈ui, uj〉 = uTi uj = δij ∀ i, j = 1, · · · , n . (1)

Defining the real n × n orthogonal matrix U = [u1 · · ·un], and the real diagonal matrix
Λ = diag [σ1 · · ·σn] we can rewrite (1) as

Σ = UΛUT with U−1 = UT . (2)

1Also known as an absolutely unbiased, or (in the Bayesian context) a conditionally unbiased estimator.
2In lecture, at various times we also use the notations Σθ(θ̂) (both dependencies explicit), Σ(θ̂) (the θ

dependence suppressed), Σθ (the θ̂ dependence suppressed), and Σθ̂ (the θ dependence suppressed).
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From (2) one can easily show that Σk = UΛkUT for all integer (positive and negative) values
of k, and meaningfully generalize this fact by defining Σr for all real values of r to be Σr =
UΛrUT , where Λr = diag [(σ1)

r · · · (σn)r]. Note that using this particular definition results
in Σr being symmetric positive definite for all r. In particular, we have Σ−1 = UΛ−1UT and
Σ

1
2 = UΛ

1
2UT .

The representation Σ = UΛUT can be equivalently written as

Σ = σ1u1u
T
1 + · · ·+ σnunu

T
n . (3)

The representation (3) is a particular example of a so-called rank–one expansion of a matrix,3

which, because it is an expansion in terms of the eigenpairs (σi, ui), i = 1, · · · , n, is known
as the Spectral Representation of the positive definite matrix Σ. It is also the singular value
decomposition (SVD) of Σ. Because Σ is symmetric positive–definite, its singular values and
eigenvalues happen to be identical, but more generally this is not the case. The SVD is a
generalization of the Spectral Representation that can be applied to general non–symmetric,
non–diagonalizable and non–square matrices.

Because the symmetric positive-definite matrix Σ happens to also be a covariance ma-
trix, the Spectral Representation (3) is also known as a Karhunen–Loéve expansion (or K-L
expansion)4 and as a Principal Components Analysis expansion (or PCA expansion). In the
latter case the eigenpairs (σi, ui) are known as the principal Components. The unit vectors
ui are known as the principal directions (in θ̃–space).

3Each individual term uiu
T
i is a rank-one matrix, as can be easily shown. A more general rank–one

expansion of an arbitrary, and even possibly non-square, matrix which we have previously encountered is the
SVD. Indeed, equations (2)-(3) give the SVD of the special, positive-definite matrix Σ, and σi, i = 1, · · ·n
are also the singular values of Σ. It is to emphasize this fact that I use σi to denote the eigenvalues (which,
in this case, are also the singular values) of Σ rather than the (perhaps) more conventional notation of λi.

4The K-L expansion provides a representation of the components of the random vector θ̃, viewed as a
correlated stochastic time series (also known as a random process) θ̃[1], · · · , θ̃[n], in terms of the components of
the nonrandom vector ui viewed as a nonrandom time-series ui[1], · · · , ui[n]. The n deterministic processes

ui[k], i = 1, · · · , n, are orthonormal with respect to the `2 inner product 〈u, v〉 =
n∑
k=1

u[k]v[k]. The K-

L expansion (or representation) is given by θ̃[k] =
n∑
i=1

π̃[i]ui[k], where π̃[i] =
〈
ui, θ̃

〉
= uTi θ̃ is random.

If we define the vector π̃ = [π̃[1], · · · , π̃[n]]T , we can readily show that π̃ = UT θ̃, θ̃ = Uπ̃, and that
Eθ (π̃π̃T ) = Λ. This shows that we can transform the correlated discrete-time random process θ̃[k] into an
equivalent uncorrelated discrete-time random process π̃[k].

More generally (and the usual situation encountered in communications theory) The K–L expansion allows
a continuous-time random process θ̃(t) to be represented in terms of a countable set of continuous-time

orthogonal (with respect to the L2 inner product) deterministic functions ui(t), θ̃(t) =
∞∑
i=1

π̃[i]ui(t), where

π̃[i] is uncorrelated. This results in the transformation of the continuous-time correlated random process θ̃(t)
into an equivalent discrete-time uncorrelated random process π̃[k], k = 1, 2, · · · , which can be quite useful
in a theoretical anaysis. For example, this transformation is commonly done when analyzing intersymbol
interference (ISI) in a communication channel.
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The principal components are not random. However, the projections of the random
vector θ̃ onto the nonrandom principal directions ui, denoted by π̃[i] = uTi θ̃, i = 1, · · · , n,
results in a collection of uncorrelated scalar random variables each with variance σi,

Eθ {π̃[i] π̃[j]} = σiδij .

If we further define the random vector

π̃ = [π̃[1], · · · , π̃[n]]T = UT θ̃

this corresponds to
Eθ

{
π̃π̃T

}
= Λ .

Note that it is readily shown that,

mseθ(θ̂) = Eθ

{
‖θ̃‖2

}
= trace Σ = trace Λ = Eθ

{
‖π̃‖2

}
= σ1 + · · ·+ σn .

Assuming that the eigenvalues are ordered from largest to smallest as σ1 ≥ · · · ≥ σn > 0
(as is usually done), then the corresponding principal directions u1, · · · , un, describe direc-
tions in θ̃–space which explain the observed statistical variation of θ̃ in decreasing importance
as measured by the eigenvalues. The projection, π̃[i], of θ̃ onto ui is known as the loading of
θ̃ on the principal direction ui, and it explains 100 × σi

σ1+···+σn
% of the observed statistical

variation in θ̃. Sometimes a principal direction can be physically (or otherwise) interpreted,
thereby providing an explanation for the amount of variation seen along that particular
direction. In terms of π̃, we can recover θ̃ as

θ̃ = UUT θ̃ = Uπ̃ = π̃[1]u1 + · · ·+ π̃[n]un .

A so-called rank-r approximation to θ̃ in terms of its r < n first most important principal
components as measured in order of decreasing importance by σ1 ≥ σ2 ≥ · · · ≥ σr ≥ · · · ≥
σn, is provided by

θ̃(r) = π̃[1]u1 + π̃[2]u2 + · · ·+ π̃[r]ur .

Note that

trace Covθ

{
θ̃(r)
}

= trace Eθ

{
θ̃(r) ˜θ(r)

T
}

= σ1 + · · ·+ σr ,

and

trace Eθ

{(
θ̃ − θ̃(r)

)(
θ̃ − θ̃(r)

)T}
= σr+1 + · · ·+ σn .

The rank-r approximation θ̃(r) explains 100× σ1+···+σr

σ1+···+σr+···+σn
% of the observed variation in

θ̃. Finally, if the components of θ̃ are interpreted as a correlated random sequence, then the
components of π̃ can be interpreted as an uncorrelated (“whitened”) random sequence which
is entirely equivalent to θ̃ (see also footnote 4).
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Homework Problems.

The symmetric positive-definite matrices Σ1 and Σ2 denote the error covariances associ-
ated with the unbiased estimators θ̂1 and θ̂2 respectively. The respective estimation errors
are denoted by θ̃1 and θ̃2. It is convenient to make the transformation λ2

i = σi, i = 1, · · · , n,
so that λi =

√
σi denotes the standard deviation of the statistical variance of θ̃ along the

direction ui.

1. Show that a level surface of θ̃TΣ−1θ̃ = k2 is the surface of an n-dimensional hyperel-
lipsoid in θ̃–space (parameter error space) and give the semi-major axes of the hyper-
ellipsoid. Describe the region θ̃TΣ−1θ̃ ≤ k2. Hint: Transform θ̃ into the uncorrelated-
elements random vector π̃ = UT θ̃ (see the discussion in footnote 4) and determine the
form of the level surfaces in the π̃–space.

2. Let 0 ≤ Σ1 ≤ Σ2. Let a be an arbitrary unit vector in θ̃–space. (i) Show that the
variance of aT θ̃1 is less than or equal to the variance of aT θ̃2 for any direction a and give
an interpretation of this fact. (ii) For an arbitrary fixed direction a consider events of

the form
{∣∣∣aT θ̃i∣∣∣ ≤ Li

}
, 0 ≤ Li <∞, i = 1, 2, each having a probability of occurrence

of at least p,

P
(∣∣∣aT θ̃i∣∣∣ ≤ Li

)
≥ p > 0, i = 1, 2 .

Use the Chebyshev inequality5

P (|e| ≤ L) ≥ 1− E {e2}
L2

.

to determine values L1 and L2 satisfying the condition L1 ≤ L2 and give a mathematical
relationship between these two bounds. Interpret this result.

3. Prove that if 0 < Σ1 ≤ Σ2, then Σ−1
1 ≥ Σ−1

2 > 0. This result, which is needed to
answer the next question below, can be surprisingly hard to prove. If you can’t fully
prove it, just show some of your attempts and move on to the next problem.6

4. Now consider events of the form
{
θ̃Ti Σ−1

i θ̃i ≤ k2
}

, for 0 ≤ k <∞, i = 1, 2.

(i) Explain that such a region defines a hyperellipsoid volume in θ̃–space (parameter
error space) which is associated with the estimation error for the estimator θ̂i. (ii)
For a given probability of occurrence of the events of at least P , use the Tchebycheff
inequality to determine a value for k. (iii) For the same fixed value of k, show that the

5Because of ambiguous transliteration from the Cyrillic (Russian) alphabet, there are a variety of equiv-
alent spellings. E.g., “Tchebycheff,” “Chebyshev,” “Tchebychev,” etc. The Chebyshev inequality is an
important statistical result which can be found in the standard upper division electrical engineering proba-
bility and statistics textbooks. The form of the Chebyshev inequality used here is one of several equivalent
variant statements.

6Hint: Show that the result holds for diagonal covariance matrices. Then show that you can simultane-
ously diagonalize two arbitrary covariance matrices and use your result for diagonal matrices.
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hyperellipsoid volume associated with θ̃1 is completely contained in the hyperellipsoid
volume associated with θ̃2. (iv) Explain how the partial ordering Σ1 ≤ Σ2 can be
interpreted in terms of nested “concentration ellipsoid” volumes7 and, in a planar
drawing, symbolically represent the ellipsoidal volumes of two matrices that cannot be
ordered with respect to each other.

Comment on the homework problems. Not surprisingly, more precise statements can
be made under a multivariate gaussian assumption on the error θ̃. See, for example, the
discussion on pages 225–226 in Statistical Signal Processing: Detection, Estimation, and
Time Series Analysis, by L.L. Scharf (1991, Addison-Wesley).

7That is, where is the estimation error, with probability P , likely to be be concentrated.


